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Abstract

With computer systems becoming more sophisticated, there is a need to have a high-

level mechanism that is able to control these systems as a whole. Some of these

systems are multiagent systems that are highly adaptable in a constantly changing

environment. This thesis focuses one such approach; an organization-based system

to designing and controlling agents. OMACS is designed to allow multiagent sys-

tems to be robust and flexible in a changing environment by modeling the loss and

degradation of agents’ capabilities. The aim of OMACS is to provide a framework to

build such systems. This thesis introduces a reorganization algorithm that produces

an optimal solution as the basis for future reorganization algorithms and provides

some recommendations for improvements to OMACS to allow better reorganization

algorithms.

In this thesis, the complexity of the reorganization algorithm that produces an

optimal solution is analyzed. In a multiagent-based system, it is generally more

efficient if most, if not all, of the agents contribute towards the workload of a complex

problem. For this reason, a simple distributed version is also provided for analysis. In

addition to analyzing the time complexity of the distributed version, a brief overview

of the message complexity is provided. Furthermore, the reorganization algorithm

is implemented in a high-level simulator to provide results on the practicality of

the reorganization algorithm. From the test results, a number of interesting areas

were uncovered. First, this thesis provides some pointers for future improvements

to OMACS to allow for more efficient reorganization algorithms. Next, this thesis

provides some basic metrics that can be used to evaluate their models in terms of

efficiency and flexibility. And lastly, this thesis highlights some promising preliminary

analysis of distributed reorganization that should be explored further.
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Chapter 1

Introduction

As technology presses forward, more complex tasks are being delegated to computa-

tional systems. This is especially true in the area of computer science and robotics.

There are even demands for dangerous tasks to be performed by robotic systems.

Automation of dangerous tasks removes the risks of danger from humans. As a re-

sult, there are complex robotics systems that can perform a wide variety of tasks;

tasks that humans are unable to or tasks that are too risky for humans. Generally,

these systems are distributed and expected to adapt to changes in their environ-

ment. While distributed systems offer increased reliability and access to distributed

resources, adaptive systems continue to perform effectively while reacting to their dy-

namically changing environments. However, control of such a system usually requires

a team of humans. For instance, the Mars Rover robot requires a team of humans to

control. With advances in computing technology, attempts are being made to reverse

the trend, where instead of requiring a team of humans to control one robot, it only

takes one human to control a team of robots.

One approach to building adaptive, distributed systems is that of multiagent sys-

tems. Some of the early multiagent systems are MaSE [DeL99], GAIA [WJK00],

and TROPOS [BPG+04]. However, early multiagent systems were typically designed

with a set of predefined goals and emphasized individual agents and their interactions.

This resulted in adaptivity at the agent-level with system-level adaptation being a

byproduct of the agent-level adaptation.
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To achieve system-level adaptation, a system-level mechanism is required. This

mechanism should define how the system-level adaptation translates into the agent-

level adaptation. Such a mechanism is the focus of a number of ongoing research

efforts based on an organizational metaphor. Various research groups are looking to

provide mechanisms that guide a group of agents by specifying high-level objectives

within a predefined organization structure. One such research is OMACS [DM05],

upon which this thesis is based. Other related research groups are mentioned in § 2.1.

However, only OMACS is relevant within the scope of this thesis.

1.1 Organization Model for Adaptive Computa-

tional Systems

In this section, an overview of the organization model by Dr. Scott A. DeLoach

and his students is presented. Information about the model is based on three sources

([DeL05], [DM04], and [DM05]) as well as information from current ongoing research1.

Figure 1.1 shows the organization model used in this thesis. Only a subset of the

model is described because there are portions of the model that is not relevant within

the scope of this thesis.

In this thesis, the organization model is referred to as the Organization Model for

Adaptive Computational Systems (OMACS )2. OMACS defines the standard entities

of an organization: goals (G), roles (R), and agents (A). In addition, OMACS also

defines three additional entities: capabilities (C), assignment set (Φ), and policies

(P ). These entities are encapsulated by an overall entity called the “Organization”.

Agents possesses a set of capabilities, which determine how well agents are capable

of playing roles. Roles achieve a set of goals. Assignments are a tuple of an agent

assigned to play a role to achieve a goal. Policies provides additional restrictions on

the relationships among the entities. The definitions of these entities as well as their

1At the time of writing this thesis, the organization model is in the middle of transitioning to
a new version. As such, most of the information in this thesis relates to the old version with some
additions from the new version.

2This name is currently the favored name of Dr. Scott A. DeLoach’s research group.
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Figure 1.1: Organization Model

relationships to each other within OMACS are described in the following subsections.

In current research on OMACS, the relationships among goals, roles, and capa-

bilities are assumed to be static. For instance, when a goal is defined as achieved by

a role, that relationship cannot be changed during runtime. However, the relation-

ship between agents and capabilities is dynamic because the dynamic relationship

allows OMACS to model the degradation or loss of capabilities. Furthermore, the set

of goals, roles, and capabilities are static. But the set of agents, assignments, and

policies are dynamic.

1.1.1 Organization

The “Organization” entity contains a function called the oaf(), also known as the

organization assignment function. The oaf() determines the effectiveness of the cur-

rent assignment set. The oaf() returns an organizational score of a real value ranging

from 0 . . .∞, where the higher the organization score the better the organization per-

forms. Typically, the oaf() is application specific and is usually redefined on a per

application basis. However, in [DM05], a default oaf() is given as the sum of the

3



assignments from the assignment set.

oaf =
∑

∀〈a,r,g〉∈Φ

potential(a, r, g) (1.1)

1.1.2 Goals

All organizations, even artificial organizations, have an overall goal which the organi-

zation is attempting to achieve. In OMACS3, the overall goal is called the top-level

organization goal (go). According to OMACS, the top-level goal can be decomposed

into subgoals. Furthermore, subgoals can also be further decomposed. Decomposed

subgoals describe in finer detail how the parent goal can be achieved. The goal model

in OMACS is similar to the KAOS [vLLD98] approach for goal decomposition. KAOS

goal based requirement modeling approach describes how goals can be decomposed

into non-cyclic subgoals using either AND-refinement or OR-refinement. An AND

goal can only be achieved when all its subgoals are achieved. An OR goal can be

achieved when one of its subgoals is achieved.

Ensuring a proper goal structure requires three conditions: there is exactly one

top-level goal, all goals (except the top-level goal) has exactly one parent, and there

are no cycles in the structure. To ensure a proper goal structure, OMACS uses a

single goal tree structure. The top-level goal is the root of the tree, which ensures

that there is exactly one top-level goal. Furthermore, all goals (except the top-level

goal) have exactly one parent goal and there are no cycles in the goal tree. The goal

tree represents the set of goals the organization is trying to achieve. More specifically,

since a decomposed goal can be achieved by achieving its subgoals (whether all or

one depends on if the goal is an AND goal or an OR goal), only the lowest level

goals needs to be achieved. In other words, the lowest level goals are goals without

subgoals. OMACS defines these lowest level goals as leaf goals (GL).

Due to the generic nature of goals, goals are used in a wide variety of situations.

3In the new version, the goals have been moved to a goal model, Goal Model for Dynamic Systems
(GMoDS ), that works in conjunction with OMACS.
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Thus, OMACS allows goals to be parameterized so that it is possible to determine

the achievement state of a goal. For example, a goal of the payroll department is

to “create paychecks”. The goal “create paychecks” is so generic that the goal can

be misinterpreted as to “create paychecks” for every company, which is typically not

the case. Typically, the payroll department only “create paychecks” for the company

to which the payroll department belongs. In some cases, some large companies have

multiple payroll departments and each payroll department is only required to “create

paychecks” for some specific departments. So, the goal “create paychecks” should

be parameterized as “create paycheck for departments” rather than creating a set of

similar goals such as “create paycheck for the sales department”, “create paycheck for

the marketing department”, and “create paycheck for the financial department”. In

OMACS, the general goal “create paychecks” can be represent as g, and the parame-

terized goal “create paycheck for departments” can be represented as g(departments).

However, parameterized goals must be instantiated with concrete values before they

can be achieved. So, for the example given above, the parameterized goal could be

instantiated as “create paycheck for the sales department” (g(sales)).

1.1.3 Active Goal Set

Even though the organization is trying to achieve the set of leaf goals, the organization

may not be trying to achieve all of the leaf goals at the same time for various reasons.

Thus, OMACS introduces the notion of an active goal set (GA). The active goal

set (GA ⊆ GL) represents the leaf goals that the organization is currently trying to

achieve. As mentioned in § 1.1.2, if a goal is a parameterized goal, that goal must be

instantiated with concrete values before the goal can be placed into the active goal

set.

Using the payroll example, the parameterized goal “create paycheck for depart-

ments” cannot be in the active goal set unless the goal is instantiated with a depart-

ment such as “create paycheck for the sales department”, “create paycheck for the

marketing department”, and “create paycheck for the financial department”. Doing

5



otherwise would cause confusion, the parameterized goal “create paycheck for de-

partments” is too general. The payroll department would ask questions like “which

department?”. Thus, the parameterized goal “create paycheck for departments” must

be instantiated.

Even with the instantiated parameterized goal “create paycheck for the sales de-

partment”, the goal may still not be placed into the active goal set. Typically, pay-

checks are a time based event such as occurring on a bi-weekly or monthly basis.

Thus, OMACS provides the notion of event-based triggered goals. A triggered goal

(which can be either parameterized or non-parameterized) can only be placed into

the active goal set when a specific event occurs while trying to achieve some other

goal. Triggers are described in more detail in § 1.1.4.

OMACS also provides the notion of sequential achievement of goals. OMACS

introduces the precedes relationship between goals to allow the sequential achievement

of goals. Thus, if a goal is preceded by some other goal, the former goal cannot be

placed into the active goal set until the latter goal has been achieved. The precedes

relationship is be described in more detail in § 1.1.5.

According to the KAOS model, OR goals can be achieved with the achievement of

only one of its subgoals. Thus, not all subgoals of an OR goal needs to be in the active

goal set. In fact, if there are any OR goals in the goal tree then an organization only

needs to achieve a subset of the leaf goals in order to achieve the top-level goal. This

would potentially allow organizations to maximize their effectiveness in achieving the

top-level goal.

Finally, the policies of an organization can further restrict which leaf goals from

the active goal set are actually being assigned for achievement by agents. This set

is known as the working goal set (ωG), where ωG ⊆ GA. In § 1.1.9, policies are

described in more detail.
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1.1.4 Triggers

The triggers4 relation restricts goals from being placed into the active goal set until

a specific event has occurred. Furthermore, when the specified event occurs, the

triggered goal is placed into the active goal set. Following the example of the payroll

department, lets say that another goal of the department is to “monitor all employees’

work hours” and paychecks are issued every month. So, the parameterized goal

“create paycheck for the sales department” is only triggered on a monthly basis by

the goal “monitor all employees’ work hours”.

The triggers relation is inherited by subgoals. For instance, if g1 (triggering goal)

triggers g2 (triggered goal) then all subgoals of g1 must be able to trigger g2. A high-

level conceptual view of the goal tree allows the triggers relation between non-leaf

goals. However, at the low-level, if there are any triggering goals that are non-leaf

goals then these triggers relations are transformed into triggers relations of all the

children of the triggering goals. This process is repeated until there are no more trig-

gering goals that are non-leaf goals. This transformation is possible because triggers

are inherited, only leaf goals can be in the active goal set, and events occur only

during the achievement of a goal. Thus, triggering goals are limited to only leaf goals

in OMACS. Figure 1.2 shows the transformation of the triggers relation. However,

the transformation can only be applied to triggering goals and not triggered goals

because of the ambiguity of OR goals that are triggered. For instance, g1 triggers g2,

g2 is an OR goal, and g2 has two leaf goals. When g2 is triggered, only one of the leaf

goals is triggered. The procedure to determine which of the leaf goals is triggered is

non-deterministic.

Typically, triggered goals are parameterized based on additional information pro-

vided by the event that triggered the goal. For example, the event that triggers the

parameterized goal “create paycheck for the sales department” must have the name

of the employees in the sales department.

4In the new version, the triggers relation exists in the goal model.
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Figure 1.2: Triggers Transformation

1.1.5 Precedes

The precedes5 relation allows the specification of sequential achievement of goals. For

instance, if g1 precedes g2 then g1 must be achieved before g2 can be placed into the

active goal set. Continuing with the payroll example, lets say that the parameterized

goal “create paycheck for the sales department” has two subgoals: “get the name and

the pay of an employee”, and “print the paycheck”. The goal “print the paycheck”

should not be achieved without first knowing who and how much to pay the employee.

To ensure that the goal “print the paycheck” is not achieved before the goal “get the

name and the pay of an employee” is achieved, the precedes relation is used to specify

that the goal “get the name and the pay of an employee” precedes the goal “print

the paycheck”.

The precedes relation is inherited by subgoals. For instance, if g1 (preceding

goal) precedes g2 (preceded goal) then g1 must precede g2 and every subgoals of g2.

A high-level conceptual view of the goal tree allows the precedes relation between

non-leaf goals. However, at the low-level, if there are any preceded goals that are

non-leaf goals then these precedes relations are transformed into precedes relations

of all the children of the preceded goals. This process is repeated until there are no

more preceded goals that are non-leaf goals. This transformation is possible because

precedes are inherited, and only leaf goals can be in the active goal set. Thus, OMACS

5In the new version, the precedes relation exists in the goal model.
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limits the preceded goals to only leaf goals. Figure 1.3 shows the transformation of

the precedes relation. However, the transformation can only be applied to preceded

goals and not preceding goals because of the ambiguity of preceding OR goals. For

instance, g1 precedes g2, g1 is an OR goal, and g1 has two leaf goals. g1 is achieved

when one of its leaf goals is achieved and g2 can now be achieved. The process by

which g1 is achieved is non-deterministic.

Figure 1.3: Precedes Transformation

1.1.6 Roles

Every organization has a set of roles that is required for an organization to achieve

the set of goals of that organization. Generally, a role is capable of achieving multiple

goals. However, the ability of that role to achieve those goals varies. Thus, OMACS

defines a function achieves() to reflect the ability of a role to achieve a goal. The

achieves() function returns a real value ranging from 0 . . . 1, where 0 indicates that

a role is incapable of achieving the given goal and 1 indicating that a role is fully

capable of achieving the given goal. Furthermore, since a goal can be achieved by

multiple roles, the achieves() function allows the organization to pick the role that

is most capable of achieving a particular goal.

In OMACS, roles are played by agents. However, there are requirements that

agents must first fulfill before playing a given role. The requirements are represented

in the form of capabilities available in the organization. Thus, roles require a certain
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subset of capabilities and agents must possess the required subset in order to play a

particular role.

However, possessing the required capabilities may not be a sufficient requirement

for playing a role. Thus, OMACS introduces the function rcf(), also known as the

role capability function. The rcf() returns a real value ranging from 0 . . . 1, where

0 indicates that the agent is incapable of playing the given role and 1 indicating the

the agent is fully capable of playing the given role. Typically, capabilities do not

contribute uniformly to the requirements of a role. Some capabilities might have

more or less contribution than other capabilities. Thus, the rcf() allows roles to

indicate the importance of capabilities when computing the result.

An example for using the rcf() is that there are two agents (Agent1 and Agent2),

one role (Role1), and one capability (Capability1). Both agents possesses Capability1

but Agent1 has a score of 0.8 while Agent2 has a score of 0.4. Role1 requires

Capability1. Without the rcf(), both agents are able to achieve Role1. However,

with the rcf(), it is now possible to indicate that Role1 requires Capability1 with

a score of at least 0.5. Thus, the rcf() when applied to Agent1 will return a non-

zero score, if there are no other stipulations. However, even though Agent2 possesses

Capability1, Agent2 lack the necessary expertise of Capability1 to achieve Role1.

Thus, the rcf() when applied to Agent2 will return 0.

However, from the perspective of OMACS, the rcf() only indicates that Agent2

is unable to play Role1. OMACS is unable to find out that agents need to have a score

of 0.5 or more of Capability1 to play Role1. In other words, the internal workings of

the rcf() is hidden from OMACS.

1.1.7 Agents

Every organization has a set of heterogeneous agents. OMACS defines agents as

“computational system instances that inhabit a complex dynamic environment, sense

and act autonomously in this environment, and by doing so realize a set of goals”

[DeL05].
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Thus, agents are assumed to exhibit the attributes of autonomy, reactiv-
ity, pro-activity, and social ability. Autonomy is the ability of agents to
control their actions and internal state. Reactivity is an agent’s ability
to perceive its environment and respond to changes in it, whereas pro-
activeness ensures agents do not simply react to their environment, but
that they are able to take the initiates in achieving their goals. Finally,
social ability allows agents to interact with other agents, and possibly
humans, either directly via communication or indirectly through the en-
vironment [DM05].

One of the reasons for the existence of organizations is to provide an effective

mechanism for distributing goals to agents such that the top-level goal is achieved.

Because of the heterogeneous nature of agents, there are some agents that are better

at playing some roles than other agents. In addition, agents can be assigned to play

more than one role, and roles can be assigned to more than one agent.

There are two reasons for the disparity: agents may possesses different sets of

capabilities, and agents may have different expertise of the same capability. It is

trivial to differentiate agents who have differing sets of capabilities. However, differ-

entiating between agents who have the same set of capabilities is not so easy if the

only information available is whether or not an agent possesses a capability. Thus,

OMACS introduces the possesses() function. The possesses() function returns a

real value ranging from 0 . . . 1, where 0 indicates that an agent does not possess the

given capability and 1 indicates that an agent is fully competent in using the given

capability. Thus, there can be two or more agents possessing the same set of capa-

bilities but each agent could potentially have very different rcf() scores. Therefore,

it is not sufficient to know that an agent possesses specific capabilities. The level of

competence of agents in using those capabilities must also be known.

1.1.8 Capabilities

Capabilities are essential in determining what roles agents are capable of playing, as

roles require capabilities and agents possess capabilities. Capabilities can represent a

wide variety of abilities, both soft and hard. Some examples of soft abilities are having
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access to resources, communications, and executing computational algorithms. Hard

abilities typically model the abilities of robots such as sensors and effectors. Sensors

allow the perception of the environment, and effectors allow interaction with the

environment [DeL05].

1.1.9 Policies

Every organization has a set of policies. Policies provide additional constraints on the

structure of organization such as modifying the relationships among agents, roles, ca-

pabilities, and goals. Policies also provide a mechanism for how organizations should

act in certain situations. There are two types of policies in OMACS: assignment

policies (PΦ) and behavioral policies. However, only assignment policies are relevant

within the scope of this thesis.

1.1.9.1 Assignment Policies

Assignment policies allow additional constraints on the assignment set. Without

assignment policies, agents can be assigned to play a role if the rcf() returns a value

greater than zero. For instance, there could be an assignment policy that says “agent

x can only play role y” which effectively prevents ‘agent x’ from playing ‘role z’ even

if the rcf() returns a value greater than zero.

1.1.9.2 Behavioral Policies

Behavioral policies constrain how the entities (agents, roles, and goals) of OMACS

should interact in relation to one another. Behavioral policies deal with events and

the reactions that should occur. [DeL02] talks about organizational rules (which are

known as behavioral policies). For instance, in a conference paper review, if an author

submits a paper then that paper should be reviewed by three reviewers6.

6The example was taken from Dr. Scott A. DeLoach’s working notes.
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1.2 Scope and Objectives

The objective of this thesis is to investigate if an efficient generic reorganization algo-

rithm can be developed and if not to investigate some basic characteristics of OMACS

that can lead to a more efficient time complexity. As a result, this thesis introduces a

reorganization algorithm that finds an optimal organization score. This algorithm is

designed such that a distributed variant can be easily implemented. In this thesis, a

simple distributed version of the algorithm is provided. Also, an analysis of the time

complexity of the algorithm and some test results on an implementation of the algo-

rithm is provided. From a combination of the analysis and the test results, certain

characteristics that can be used with OMACS for designing “good” and “efficient”

models is shown.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 provides background information on the different types of search algo-

rithms currently available.

Chapter 3 describes two versions of the algorithm developed for OMACS. The cen-

tralized version is described first followed by the simple distributed version.

Chapter 4 analyzes the time complexity of the two versions of the algorithm. In

addition, a high-level analysis of message complexity for the simple distributed

version of the algorithm is provided.

Chapter 5 presents an implementation of the two versions of algorithm in a high-

level simulator that uses the current implementation of OMACS.

Chapter 6 evaluates the implementation of the centralized version of the algorithm

through a series of test cases.
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Chapter 7 summarizes the contributions of this thesis and provides suggestions for

future improvements.
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Chapter 2

Background

This chapter provides background information on a number of related areas that lead

to the work in this thesis. § 2.1 provides background information on related work.

§ 2.2 looks at some related reorganization algorithms applied to a specific problem.

And § 2.3 looks at some strategies for search algorithms.

2.1 Related Work

Many multiagent systems exhibit characteristics of an organization, whether it is

implicit or by design [CG99]. According to Carley and Gasser, organizations are

“heterogeneous, complex, dynamic nonlinear adaptive and evolving systems” [CG99]

and because of this, organizations are hard to analyze. To allow analysis of organi-

zations, they introduced the notion of Computational Organization Theory (COT).

COT models formalizes various organizational concepts in attempts to study and

analyze the attributes or emergent properties of organizations.

One of the first work that formalized some of these organization concepts is the

Aalaadin model [FG98]. The Aalaadin model formalized the organization con-

cepts of agents, groups, and roles. These formalized concepts are now used in many

other organization-based models. In Aalaadin, an agent is defined as an entity that

plays roles, a group is defined as a set of agents, and a role is defined as the function

of agents within a group. Later, the Aalaadin model was extended to the AGR

model [FGM03]. The formalized concepts of agents and roles are used in OMACS.
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Kirn and Gasser [KG98] provided a specification for organizational design by for-

malizing the concept of coordination. They defined the term “organizational position”

as “a set of role expectations”, which can be be formally specified by their Vienna

Development Method (VDM) notation. The concept of coordination was present

in earlier versions of OMACS but was later removed because coordination does not

contribute to the process of reorganization.

Ferber, Gutknecht, Jonker, Müller, and Treur [FGJ+02] formalized the behavioral

aspects of organizations through the use of requirements engineering. Their approach

uses the definitions from the Aalaadin model, in which four types of behavioral

requirements are identified: single role behavior requirements, intragroup interaction

requirements, intragroup communication successfulness requirements, and intergroup

interaction requirements. The concept of behavior is present in OMACS in the form

of behavioral policies.

Odell, Nodine, and Levy [ONL05] introduced a metamodel for modeling multi-

agent systems in an extension of Unified Modeling Language (UML). The concepts

used in their metamodel follows from the Aalaadin model of agents, groups, and

roles. OMACS is a metamodel in addition to being a COT model.

The research work listed above highlights some of the work done in formalizing

organizational theory. These formalizations in turn helped in the development of

more complete organization-based models. And, so the next two subsections looks at

two complete organization-based COT models: OperA (§ 2.1.1) and OMNI (§ 2.1.2).

2.1.1 OperA

OperA (Organizations per Agents) [Dig04] is a multiagent systems framework that

allows specification of organizational objectives and structure by allowing autonomous

and heterogeneous agents to enter and leave the organization. OperA framework allow

these agents to coordinate and collaborate with other agents in the organization to

achieve the organizational objectives. To achieve the coordination and collaboration,

OperA provides the notion of abstract protocols that allows agents to interact with
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other agents regardless of how the agent was designed. Thus, the OperA framework

consists of three parts: Organizational Model, Social Model, and Interaction Model.

The Organizational Model defines the characteristics of the organization using the

following four structures: social, interaction, normative, and communicative. The so-

cial structure defines the objectives of the organization, the roles that exists in the

organization, and the type of coordination model used by the organization. The inter-

action structure defines interaction among agents as scene scripts, which is played out

by the roles from the organization. In addition, the interaction structure introduces a

partial ordering to the scene scripts, which provides information about the interaction

that occurs among roles. The normative structure defines the norms and regulations

[Dav01] of the organization, which are split into three categories: role norms, scene

norms, and transition norms. Role norms defines how agents playing a role should

act. Scene norms defines how roles in scenes should act. And transition norms defines

how roles are able to move from one scene to another. The communicative structure

defines the ontology that is used by the organization for communication, which con-

sists of the domain knowledge (knowledge representation language) and the agent

interaction (communication language).

In the Social Model, social contracts constrains the actions of agents in the organi-

zation. A social contract defines conditions that an agent must meet before assuming

a role in the contract as well as rules that the agent must follow after assuming the

role. An agent playing a role in a social contract is termed a role-enacting agent.

The Interaction Model allows the dynamic enactment of scripts (defined in the

Organizational Model) by role-enacting agents (defined in the Social Model). Because

scripts from the Organizational Model are abstract, role-enacting agents in a script

must first agree on the interaction protocol that will be used for the script. Thus, the

interaction contract is formed.

Although OperA provides the means to model an organization by describing the

interactions that occur among the agents, the overall objectives of the organization

are encapsulated within the roles specified in the social structure of the Organization

17



Model. Basically, the goals have been merged with the roles. In OMACS, the goals

and roles are separated. This allows for a stronger expression of the relationship

between roles and goals. However, OperA provides a more complete framework from

design to implementation. Currently, OMACS is lacking the implementation area.

2.1.2 OMNI

OMNI (Organizational Model for Normative Institutions) [DVSD04] is a framework

designed for closed and open multiagent systems. OMNI allows a wide range of

multiagent systems to be modeled. OMNI caters to open multiagent systems that

is able to allow heterogeneous agents to enter the organization with their own goals,

beliefs, and capabilities. Furthermore, OMNI does not assume that agents that enter

the organization are cooperative agents.

OMNI is based on two models: OperA [Dig04] and HarmonIA [VSD03]. The

OMNI framework consists of three dimensions. The three dimensions are the Nor-

mative Dimension, the Organizational Dimension, and the Ontological Dimension.

Furthermore, each of the three dimension is broken up into three levels: Abstract

Level, Concrete Level, and Implementation Level.

The Abstract Level defines the main objectives (statutes) of the organization,

which are the overall goals of the organization. The manner in which the organiza-

tion achieves the objectives are guided by the values of the organization. The values of

the organization are beliefs that defines what is good or bad. Lastly, the environment

in which the organization functions in is defined by the context. The Concrete Level

refines the definitions of the Abstract Level further by defining the norms [DD01]

[EPS01] and rules [Zam02] of the organization, the roles in the organization, land-

marks, and concrete ontological concepts. And finally, the Implementation Level

implements the definitions from the Concrete Level. Examples of the mechanisms are

mechanisms for playing roles and mechanisms for enforcing norms and rules.

The purpose of the Normative Dimension is to verify that the organization follows

norms and rules defined by the organization. In the Abstract Level of the Normative
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Dimension, the values are the norms which are used to define concepts that determine

the usefulness of a situation. The Concrete Level refines the norms from the Abstract

Level further resulting in what is called the Norm Level. The norms from the Norm

Level is then used to create the rules, violations, and sanctions, which is known as

the Rule Level. The norms and rules from the Concrete Level are implemented in the

Implementation Level using either of the two approaches: “creating a rule interpreter

that any agent entering the organization will incorporate” and “translating the rules

into protocols to be included in the interaction contracts”.

The Abstract Level of Organizational Dimension defines the organization’s ob-

jectives. These objectives are only objectives that can be observed from outside the

organization. Internal or unobservable objectives are not defined here. The Concrete

Level defines how these objectives can be achieved by providing two structures: social

structure and interaction structure. The social structure defines the roles of the orga-

nization and the interaction structure defines “a set of meaningful scenes”. The two

structures are implemented in the Implementation Level. The social structure results

in the social model and the interaction structure results in the interaction model.

The Ontological Dimension defines mechanisms for coordination and collaboration

within the organization. The Abstract Level provides a meta-ontology that defines

all the concepts of OMNI such as the norms and rules, the roles and groups, the

violations, the sanctions, and the landmarks. The Concrete Level are split into two

parts: the Concrete Domain Ontology and the Procedural Domain Ontology. The

Concrete Domain Ontology “includes all the predicates and elements that appear

during the design of the Organizational and Normative Structure”. The Procedural

Domain Ontology provides terms that will be used in the Implementation Level.

OMNI provides a formal logical semantics for every part of the framework. This al-

lows OMNI models to be verified for correctness and consistency. Currently, OMACS

lacks a formal logical semantics. However, OMACS is in the process of being formal-

ized.

19



2.2 Reorganization Algorithms

Generally, there is no single organization that is sufficient for any situation [IGY92]

[HL05] [CG99]. Therefore, there is a need to change the structure of the organization

(reorganization) so that the new organization is “better” when adapting to changes.

“Better” is a subjective term that can mean more efficient or more flexible. Often,

efficiency and flexibility are opposing forces [RDK06]. Increasing efficiency may de-

crease flexibility and vice versa. According to [DDS04], two types of reorganization

can occur: behavioral change and structural change. Behavioral change occurs when

a new agent joins the multiagent system, when an agent leaves the multiagent sys-

tem, and when agents agree on some interation protocol. Structural change occurs

when the interaction between agents changes, and when environmental changes re-

quires modifications to the design model. The organization models mentioned in this

section are designed for a specific problem domain.

Ishida, Gasser, and Yokoo [IGY92] introduced the concept of reorganization to a

production system, in what they call Organization Self-Design (OSD). OSD consists

of two new organization primitives: decomposition and composition. Decomposition

divides one agent into two, while composition combines two agents into one. Their

OSD approach is able to adapt to a particular set of environmental changes such as

changes in response time requirements, changes in number of requests per time unit,

and changes in demand for resources. Their experimental results show increased

performance when OSD is used.

Barber and Martin [BM01] provided a framework for multiagent systems called

Adaptive Decision-Making Frameworks (ADMF). In their paper, ADMF assumes

that resources that the system requires do not change, the capabilities of agents do

not change, and tasks responsibilities do not change. The focus of reorganization is

primarily on two types of relationships among agents: “decision-making control” and

“authority-over”. Agents designated as “decision-making control” agents are agents

that decides how goals are achieved. Agents designated as “authority-over” agents

are agents that are under the command of “decision-making control” agents. Their
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experiments show promising results of improved performance when compared to a

static model.

In [ZCLL04], the authors proposed a multiagent system framework for a dis-

tributed information retrieval system for use in a peer-to-peer network. Their imple-

mentation relies on two algorithms: the agent-view algorithm, and the distributed

search algorithm. Their focus is primarily on the Agent-View Reorganization Algo-

rithm (AVRA). The AVRA creates a topology consisting of agents that are grouped

into non-disjoint clusters. A cluster consists of agents that knows the same infor-

mation. Results from their experiments show significant performance increase for

information retrieval.

The algorithms listed above are tied to a specific problem domain. There may not

be performance gains when applied to a different problem domain. Thus, the next

section looks at general search strategies.

2.3 Search Strategies

There are two broad areas of search strategies: uninformed search and informed

search. Algorithms in these areas are evaluated in the following four categories:

completeness, time complexity, space complexity, and optimality. In order for an

algorithm to be complete, that algorithm is guaranteed to find a solution if one

exists. Time complexity means how long the algorithm takes to find a solution.

Space complexity means how much memory is required for an algorithm to perform

the search. An optimal algorithm returns the best solution if there is more than one

solution. [RN95]

2.3.1 Uninformed Search

An uninformed search algorithm can be applied to a wide variety of problems because

uninformed search algorithm does not rely on utilizing information about the problem

domain. Because uninformed search algorithms do not rely on information about

the problem domain, a general implementation of uninformed search algorithms can
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be applied to a wide variety of problems. However, the search space required by

uninformed search algorithms are exceedingly large for small examples.

Two popular uninformed search algorithms are looked at: depth-first and breath-

first. The two uninformed search algorithms are not the only algorithms available;

there are more uninformed search algorithms such as uniform-cost search and iterative

deepening search.

2.3.1.1 Depth-First Search

Depth-first search [RN95] works in a similar way to a LIFO (last-in, first-out) queue.

An initial node is select and inserted into the queue. The following steps then occurs

for the depth-first search algorithm:

1. If the queue is empty then the depth-first search algorithm stops because there

is no path from the initial node to the goal node. Otherwise, the depth-first

search algorithm removes the last node (n) from the queue.

2. If the removed node (n) is a goal node then the depth-first search algorithm

returns the path taken from the initial node to reach n and stops. Otherwise, n

is expanded to obtain a list (l) of all adjacent nodes that can be reached from

n and n is then inserted into the “visited” list.

3. Every node li from l is checked against the “visited” list. If li /∈ “visited” list

then li is inserted into the queue.

4. Repeat step 1.

The above description assumes that all edges have a uniform “cost”. If the “cost”

is different for edges, then step 3 will have to be modified appropriately to handle the

non-uniform “cost” of edges. Figure 2.1 shows an example of the order in which the

nodes are visited.

The following is the evaluation of the depth-first search on the four categories:

• Not complete because depth-first search may get stuck in an infinite path.
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Figure 2.1: Depth-First Search Example

• Not optimal because depth-first search may find a solution with a bigger depth

when a solution with a smaller exists.

• Time complexity is O(bd), where b is the number of adjacent nodes that each

node has and d is the depth of the solution.

• Space complexity is O(bm), where b is the number of adjacent nodes that each

node has and m is the maximum depth of the search space.

In OMACS, there is no trivial mechanism to transform the problem of reorgani-

zation into a graph where the depth-first search algorithm can be applied. Two of

the transformation problems are: a structured representation of the reorganization

problem, and how the “cost” of edges are computed.

2.3.1.2 Breath-First Search

Breath-first search [RN95] works in a similar way to a FIFO (first-in, first-out) queue.

An initial node is selected and inserted into the queue. The following steps then occurs

for the depth-first search algorithm:

1. If the queue is empty then the breath-first search algorithm stops because there

is no path from the initial node to the goal node. Otherwise, the breath-first

search algorithm removes the first node (n) from the queue.
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2. If the removed node (n) is a goal node then the breath-first search algorithm

returns the path taken from the initial node to reach n and stops. Otherwise, n

is expanded to obtain a list (l) of all adjacent nodes that can be reached from

n and n is then inserted into the “visited” list.

3. Every node li from l is checked against the “visited” list. If li /∈ “visited” list

then li is inserted into the queue.

4. Repeat step 1.

The above description assumes that all edges have a “cost” that is obtained from

a function that is non-decreasing based on the depth of the node. However, if the

“cost” is different for edges, then step 3 will have to be modified appropriately to

handle the non-uniform “cost” of edges. Figure 2.2 shows an example of the order in

which nodes are visited.

Figure 2.2: Breath-First Search Example

The following is the evaluation of breath-first search on the four categories:

• Complete because breath-first search will find a solution if one exists.

• Optimal if “costs” are uniform. Otherwise, breath-first search finds the solution

with the shortest path.
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• Time complexity is O(bd), where b is the number of adjacent nodes that each

node has and d is the depth of the solution.

• Space complexity is O(bd), where b is the number of adjacent nodes that each

node has and d is the depth of the solution.

The memory requirements of the breath-first search algorithm is unacceptably

large. Even though the time and space complexity are the same, the memory require-

ments poses a significant problem because memory is limited, whereas time is not.

If a problem requires 10 gigabytes of memory and the computer does not have that

memory, it is not possible to perform the search without upgrading the computer.

However, if there is sufficient memory, and the solution requires 10 months of running

time, it is possible to leave the computer running for 10 months to obtain the solution.

2.3.2 Informed Search

An informed search algorithm relies on heuristics, which incorporates information

about the problem domain, to decide which search path to explore. A good heuristic

will enable an informed search algorithm to perform more efficiently than an unin-

formed search algorithm. In uninformed search algorithms, the search space can be

exceedingly large and sometimes it is just not feasible to search the whole search

space. That is the purpose of heuristics, heuristics should allow for a more focused

search in the search space that seems to lead closer to the goal. However, there are

some cases where the best solution involves taking some really convoluted path to

reach the goal.

The following sections look at two of the more popular informed search algorithms:

best-first search and A* search. [RN95]

2.3.2.1 Best-First Search

Best-first search [RN95] is an optimization of the depth-first search algorithm. Best-

first search utilizes an evaluation function to estimate the score of a node. Instead of

a LIFO queue, best-first search uses a priority queue. Nodes in the queue are sorted
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by their score. The node that is removed from the queue is the one with the best

score (usually the node with the lowest “cost”). The simplest form of the best-first

search is also known as the greedy search, which uses the evaluation function h(n) =

estimated “cost” from current node to the goal node. An initial node is select and

inserted into the queue. The following steps then occurs for the depth-first search

algorithm:

1. If the queue is empty then the best-first search algorithm stops because there is

no path from the initial node to the goal node. Otherwise, the best-first search

algorithm removes the best node (n,h(n)) from the queue.

2. If the removed node (n,h(n)) is a goal node then the best-first search algorithm

returns the path taken from the initial node to reach n and stops. Otherwise, n

is expanded to obtain a list (l) of all adjacent nodes that can be reached from

n and (n,h(n)) is then inserted into the “visited” list.

3. Every node li from l is checked against the “visited” list. If li /∈ “visited” list

then the evaluation function is applied to li to obtain (li,h(li)) and inserted into

the queue.

4. Repeat step 1.

The following is the evaluation of best-first search on the four categories:

• Complete if depth of search space is finite.

• Not optimal because the best-first search may find a solution with a total “cost”

that is higher than then optimal one.

• Time complexity is O(bm), where b is the number of adjacent nodes and m is

the maximum depth of the search space.

• Space complexity is O(bm), where b is the number of adjacent nodes and m is

the maximum depth of the search space.
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Best-first search presents the same problems as breath-first search where the mem-

ory requirement is unacceptably high.

2.3.2.2 A* Search

A* search [RN95] is a refinement of the best-first search algorithm. A* search performs

the search by taking in account the path “cost”. The path “cost” is the sum of the

“costs” taken from the initial node to the current node. A* search uses the evaluation

function f(n) = g(n) + h(n), where g(n) is the path “cost” and h(n) is the estimated

“cost” from current node to the goal node. The following steps occurs for the A*

search algorithm:

1. If the queue is empty then the A* search algorithm stops because there is no

path from the initial node to the goal node. Otherwise, the A* search algorithm

removes the best node (n,f(n)) from the queue.

2. If the removed node (n,f(n)) is a goal node then the A* search algorithm

returns the path taken from the initial node to reach n and stops. Otherwise, n

is expanded to obtain a list (l) of all adjacent nodes that can be reached from

n and n is then inserted into the “visited” list.

3. The evaluation function is applied to every node li from l to obtain (li,f(li)).

4. (li,f(li)) is checked against the “visited” list. If li /∈ “visited” list then insert

(li,f(li)) into the “visited” list. If li ∈ “visited” list as (li,f(lk)) then if f(li) <

f(lk) then replace (li,f(lk)) with (li,f(li)).

5. Repeat step 1.

The following are some points to note about the A* search algorithm:

• “Complete on locally finite graphs (graphs with a finite branching factor) pro-

vided there is some positive constant δ such that every operator costs at least

δ” [RN95].
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• Optimal if the heuristic is admissible. An admissible heuristic is where the

f(n) never overestimates the cost of reaching the goal node. In other words, a

heuristic is admissible when h(n) ≤ h∗(n) for all n, where h∗(n) is the actual

cost of reaching the goal node from n. An example of a admissible heuristic is

h(n) = 0 for all n.

• Time complexity

• Space complexity

Since A* search is a refinement of the best-first search algorithm, A* search also

suffers from an unacceptable memory requirement.

2.4 Summary

In summary, this chapter looks at early work that formalized some aspect of organiza-

tion theory, which eventually lead to the development of the two organization-based

COT models described in § 2.1.1 and § 2.1.2. Following that, the next section looks

at three reorganization algorithms that is designed for a specific problem domain, and

how their performance benefits might not transfer when applied to other domains.

And lastly, four types of general search algorithms are discussed. The main limitation

of adopting any one of the algorithms is with the transformation to a structured graph-

like representation. The next chapter looks at an algorithm developed for OMACS

that resulted from the study of the domain-specific reorganization algorithms and the

four general search algorithms.
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Chapter 3

Reorganization Algorithm

In this chapter, the two versions of the reorganization algorithm developed specif-

ically for OMACS are described. The algorithm is guaranteed to find the optimal

organizational score, if one exists. The optimal organizational score is the highest or-

ganizational score returned by the oaf() for differing assignment sets. Furthermore,

the reorganization algorithm can be used to determine the initial organization as well.

The centralized version of the algorithm is described first. The centralized version

relies on a “master” agent to compute the optimal organizational score using a given

oaf(). However, since the internal workings of the oaf() is not exposed to the

algorithm and that there are no specifications to follow for constructing an oaf(), the

only way to compute the optimal organization score is through a brute force search.

However, some shortcuts are used so that paths that are known to be invalid before

the algorithm starts are not explored. One of these shortcuts is using the relationship

between goals and roles. Thus, there is no need to test every goal with every role

based on the achieves() function. The set of roles can be directly extracted from

the goals by using that relationship. For the purposes of this thesis, the centralized

version of the algorithm is known as the Centralized Brute Force (CBF ) algorithm.

Following the description of the CBF is the description of the simple distributed

version of the algorithm. The idea is that every agent in the organization contributes

computing power to compute the optimal organization score. The reason for using the

distributed approach is so that the time complexity of the CBF can be be reduced.
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For the purposes of this thesis, the distributed version of the algorithm is known as

the Distributed Brute Force (DBF ) algorithm.

Before the description of the two versions of the algorithm, the following are the

underlying assumptions made by the algorithm.

• Every agent within the organization is able to communicate with each other,

either directly or indirectly. Agents that are unable to communicate are not

considered to be part of the organization at the time the algorithm starts.

• Every organization provided to the algorithm is valid, particularly the rcf()

and the oaf() are deterministic.

Furthermore, an example organization is used throughout this chapter to better

explain the algorithm. The example organization consists of three working agents

(ωA1, ωA2, and ωA3), three roles (R1, R2, and R3), and three working goals (ωG1,

ωG2, and ωG3).

The algorithm will find the optimal organization score based on a given set of leaf

goals (ωG ⊂ GA) and a given set of agents (ωA ⊂ A). Thus, the algorithm is able

to find the optimal organization score on a portion of the organization. In order to

find the optimal organization score for the complete organization, the given inputs

should be ωG = GA and ωA = A.

3.1 Centralized Brute Force Version

This section looks at how the CBF version of the algorithm works. Furthermore,

the CBF serves as the basis for comparison by the DBF . The pseudo code for the

CBF is given in Figure 3.1. The CBF assumes that there is a “master” agent in the

organization with the complete knowledge of the organization and that this “master”

agent is the agent responsible for reorganizing. This agent is simply known as A0.

The CBF computes the optimal organizational score in two phases.

1. Creation of the data-structure necessary for computing the optimal organiza-

tional score.
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function CBF(Organization, ωG, ωA)

maps ← {}
for each ωGg do

for each Rr that achieves ωGg do
maps ∪ 〈Rr, ωGg〉

end for
end for
λ ← reduce(powerset(maps))
links ← {}
for each ωAa do

for each λm do
if ωAa is capable of λm then

links ∪ 〈ωAa, λm〉
end if

end for
end for
combinations ← combination(reduce(links))
for each combinationi from combinations do

Φ ← {}
for each linkl from links do

Φ ∪ 〈linkl.agent, linkl.setcombinationi
〉

end for
if PΦ(Φ) is valid then

if (score ← oaf(Φ)) > best.score then
best ← 〈score, Φ〉

end if
end if

end for
return best.Φ

Figure 3.1: Centralized Brute Force Pseudo Code

2. Computing the optimal organizational score.

The disadvantage of creating the data-structures first and then computing the opti-

mal organization score is that the space complexity is higher than other centralized

variants that creates the data-structures on the fly. However, this approach allows

the CBF to be easily distributed.

First, A0 creates all the valid mappings between roles and goals in the organiza-

tion. In the algorithm, the ωG is used to create the mappings. The mappings 〈Rr,
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ωGg〉 are created by going through each working goal (ωGg) and mapping ωGg with

every role (Rr) than can achieve ωGg. No checks are required to determine if Rr

achieves ωGg because the set of roles that achieves ωGg can be obtained by using the

relationship “achieved by”, which returns a set of roles that achieves ωGg.

Once all the mappings are obtained, a power set of the mappings is created. This

power set represents all the possible role-goal assignments that agents can be assigned

to, regardless if an individual agent is actually capable of playing the role. Figure 3.2

shows an example power set of three mappings (〈R1, ωG1〉, 〈R2, ωG2〉, and 〈R3,

ωG3〉), where each set from the power set is a possible mapping set (λm).

{}
{〈R1, ωG1〉}
{〈R2, ωG2〉}
{〈R3, ωG3〉}
{〈R1, ωG1〉, 〈R2, ωG2〉}
{〈R1, ωG1〉, 〈R3, ωG3〉}
{〈R2, ωG2〉, 〈R3, ωG3〉}
{〈R1, ωG1〉, 〈R2, ωG2〉, 〈R3, ωG3〉}

Figure 3.2: Example Power Set

The size of the power set can be reduced by applying assignment policies (PΦ) of

the organization. Mapping sets from the power set can be removed if there is a policy

that would indicate that a particular mapping set is invalid. For example, if there is

a policy that says that an agent cannot be assigned to two or more roles, then the

mapping sets {〈R1, ωG1〉, 〈R2, ωG2〉}, {〈R1, ωG1〉, 〈R3, ωG3〉}, {〈R2, ωG2〉, 〈R3,

ωG3〉}, and {〈R1, ωG1〉, 〈R2, ωG2〉, 〈R3, ωG3〉} from Figure 3.2 can be removed from

the power set. This would effectively reduce the size of the example power set from

Figure 3.2 from 8 mapping sets to 4 mapping sets.

With this reduced power set, all agents from ωA are checked against each mapping

set. If an agent (ωAa) is capable of playing a mapping set (λm), a link is created

between ωAa and λm. Figure 3.3 shows an example of the conceptual view of a links

data structure of the three agents (ωA1, ωA2, and ωA3) and the example power set
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from Figure 3.2.

ωA1 = {{}, {〈R1, ωG1〉, 〈R3, ωG3〉}, {〈R3, ωG3〉}}
ωA2 = {{}, {〈R1, ωG1〉, 〈R2, ωG2〉}, {〈R1, ωG1〉}}
ωA3 = {{}, {〈R1, ωG1〉}, {〈R2, ωG2〉}, {〈R3, ωG3〉}}

Figure 3.3: Example Links Data Structure

Similarly, the number of links can be reduced by assignment policies in the orga-

nization. For example, if there is a policy that says that ωA3 cannot play R3, then

the link to the mapping set {〈R3, ωG3〉} can be removed from ωA3.

The reduced links data-structure is used for the second phase of the algorithm:

computing the optimal organizational score. To compute an organizational score,

an assignment set (Φ) is required. An assignment set is when all agents from ωA

have been assigned to exactly one mapping set from their links data-structure. For

instance, an assignment set could be ωA1 is assigned to {〈R1, ωG1〉, 〈R3, ωG3〉}, ωA2

is assigned to {}, and ωA3 is assigned to {〈R1, ωG1〉}. At this point, an organizational

score can be computed.

Therefore, finding the optimal organizational score requires going through every

possible combination of the assignment set and computing the organizational score for

each combination, while keeping track of the highest organizational score. However,

not all combinations are valid because there could be a policy that disallows some

combinations. For example, there could be a policy that says that if ωA1 plays R1,

ωA3 cannot play R3. Once the algorithm finishes going through all the combinations,

the algorithm will have found the optimal organizational score and the assignment

set that produced that score assuming one exists.

3.2 Distributed Brute Force Version

This section looks at a way to distribute the CBF . The approach used is very simple

and the premise adopted is to have as little communications as possible among the

agents. The DBF attempts to alleviate some of the computational complexity of the
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CBF by parallelizing one aspect of the CBF : the generation of the data-structures

before computing the optimal organizational score. The pseudo code for the DBF is

given in Figure 3.4. The DBF relies on the assumption that every agent already has

the complete knowledge of the organization. Or that the agents are able to obtain

that knowledge before the algorithm begins.

function DBF(Organization, ωG)

maps ← {}
for each ωGg do

for each Rr that achieves ωGg do
if ωAself is capable of Rr then

maps ∪ 〈Rr, ωGg〉
end if

end for
end for
λself ← reduce(powerset(maps))
send λself to all agents
receive λi from all agents
combinations ← combination(λ)
for each combinationi from combinations do

Φ ← {}
for each λj from λ do

Φ ∪ λjcombinationi

end for
if PΦ(Φ) is valid then

if (score ← oaf(Φ)) > best.score then
best ← 〈score, Φ〉

end if
end if

end for
return best.Φ

Figure 3.4: Distributed Brute Force Pseudo Code

When the algorithm starts, each agent (ωAself ) begins by computing their list

of possible mappings 〈Rr, ωGg〉. Creating a mapping is almost similar to the way

the CBF creates the mappings with the exception that the mappings are specific to

ωAself . A mapping is created for ωAself by going through each working goal (ωGg)

and mapping ωGg with every role (Rr) than can achieve ωGg and ωAself is capable
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of playing Rr. Figure 3.5 shows an example of the mappings for ωAself using the

example organization.

ωA1 = 〈R1, ωG1〉, 〈R3, ωG3〉
ωA2 = 〈R1, ωG1〉, 〈R2, ωG2〉
ωA3 = 〈R1, ωG1〉, 〈R2, ωG2〉, 〈R3, ωG3〉

Figure 3.5: Working Agents Mappings

Once ωAself has created all the mappings, a power set of mappings is created.

The difference between the power set from the DBF and the CBF is that the power

set from the DBF is specific to ωAself . Similarly, just like the CBF , the power set

can be reduced in size by assignment policies of the organization.

With the reduced power set, ωAself sends the reduced power set to every other

agent. After which, ωAself waits to receive the reduced power set from every other

agent. No assumptions are made on how the reduced power set is sent. The reduced

power set can be sent in some optimized form such that when ωAself receives a reduced

power set, there are no two or more instances of duplicate mappings.

When ωAself receives all the reduced power sets from every other agent, ωAself

begins computing the optimal organizational score. The procedure for computing the

optimal organization score in the DBF is exactly the same as the CBF . In § 7.2,

other ways of designing a distributed algorithm are mentioned. However, the details

of designs and implementation are left to future work.

3.3 Summary

In summary, this chapter describes the internal workings of the two versions of the

algorithm. The CBF version finds the optimal organizational score by relying on a

“master” agent to do all the computation. The DBF version distributes the work

of generating the data-structures to all agents involved but computes the optimal

organizational score individually. In the next chapter, the complexity of the algorithm

is analyzed, particularly focusing on the time complexity. Also, space complexity
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is analyzed when required and a high-level analysis of the message complexity is

provided for future distributed algorithms to consider.
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Chapter 4

Complexity Analysis

This chapter analyzes the complexity of the two versions of the algorithm: CBF and

DBF . The focus is primarily on the CBF version since the DBF version is more of

an illustrative example of how to distribute the algorithm.

In the analysis, time complexity of the algorithm is the primary concern. How-

ever, because some parts of the time complexity analysis rely on knowing the space

complexity, the space complexity analysis is provided on a “need to” basis.

The following are the assumptions for the analysis of the algorithm.

• Instructions are executed in constant time.

• There are no assignment policies (PΦ). Assignment policies have varying effects

in reducing the size of data-structures. Some can reduce the size by an expo-

nential factor, some a polynomial factor, and some a constant factor. For the

purposes of analyzing the algorithm, there are no assignment policies. Further

discussions on the effects of assignment policies are in § 6.3.2.

• The given organization is valid, particularly the oaf() and rcf() are deter-

ministic. Deterministic means that if the same input is given to the oaf(), the

oaf() will always return the same value. Similarly, the rcf() returns the same

value for the same input. Furthermore, the set of working agents and the set of

working goals all exists within the organization.
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• The given organization is achievable. For an organization to be achievable, roles

have to be achieved by at least one agent and goals have to be achieved by at

least one role.

• Agents communicate via messages which are sent point to point. There are no

mechanisms for broadcasting messages. However, a broadcast can be simulated

by sending the same message to every agent.

With the stated the underlying assumptions, the following terms are defined for

use in the analysis of the algorithm.

Definition 1 let g be the cardinality of ωG (g = |ωG|), a part of validity constraints

for an organization is that g > 0.

Definition 2 let r be the cardinality of R (r = |R|), a part of the validity constraints

for an organization is that r > 0.

Definition 3 let a be the cardinality of ωA (a = |ωA|), a part of the validity con-

straints for an organization is that a > 0.

Definition 4 let p be the cardinality of PΦ (p = |PΦ|). In this analysis, p = 0.

Definition 5 let ravgg be the average number of roles that can achieve each goal, a

part of the viability constraints for an organization is that ravgg > 0.

We define two lemmas that are used in the analysis of the two versions of algorithm.

In addition, this thesis uses the notion Ω(n) for the lower bound complexity, Θ(n)

for the exact complexity, and O(n) for the upper bound complexity. Furthermore,

sometimes we use the terms “best case” and “worst case” for best case inputs and

worst case inputs.

A power set function requires a set as the input. Given a set (s) of size n, the

power set of s has a size of 2n. The power set function will create 2n elements.

Creating a single element of the power set takes some constant time c, thus creating

2n elements will take Θ(c × 2n) time. However, c is a constant factor and can be

factored out. Thus, we arrive at the Lemma 1.
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Lemma 1 The time and space complexity of the power set function is Θ(2n).

The combinations function requires a set of sets (s) as the input. Given a set of

sets (s) of size n, there are exactly
∏n

i=1 |si| number of combinations, where |si| is

the cardinality of ith element from s. Selecting one combination requires selecting

one element from si for every element of s. So, selecting one combination takes Θ(n)

time. Therefore, selecting all combinations will require Θ(n×
∏n

i=1 |si|) time. Thus,

we arrive at Lemma 2.

Lemma 2 The time complexity of the combinations function is Θ(n×
∏n

i=1 |seti|).

4.1 Analysis of Centralized Brute Force

Claim: Time complexity of the CBF for the best case is Θ(2g×ravgg) and for the

worst case is Θ(2g×ravgg×a).

Proof: We show that the time complexity of the CBF is Θ(2g×ravgg) for the best

case and Θ(2g×ravgg×a) for the worst case.

The pseudo code from Figure 3.1 is used for this analysis. The CBF is broken

down into four parts for analysis.

We begin by analyzing the first part. Figure 4.1 shows the first part of the CBF

that we are analyzing. The outer loop iterates Θ(g) time. However, the inner loop

iteration is variable because the number of roles is dependent on ωGg, that is each

ωGg has a set roles that can achieve ωGg. As such, we look at two possibilities: the

best case and the worst case. For the best case, each ωGg has only one role that can

achieve ωGg. For the worst case, each ωGg can be achieved by r roles, which is all the

roles available. Thus, the best case time complexity is Θ(g) and the worst case time

complexity is Θ(g × r). Similarly, the space complexity of the best case is Ω(g) and

the worst case is O(g× r). By using the ravgg, we can combine the best case and the

worst case complexity. In the best case, where ravgg = 1, Θ(g× ravgg) ≡ Θ(g). In the

worst case, where ravgg = r, Θ(g × ravgg) ≡ Θ(g × r). Thus, we have Θ(g × ravgg),

where 1 ≤ ravgg ≤ r, for both time and space complexity.
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for each ωGg do
for each Rr that achieves ωGg do

maps ∪ 〈Rr, ωGg〉
end for

end for

Figure 4.1: CBF Part One

Figure 4.2 shows the second part of the CBF that we are analyzing. From

Lemma 1, generation of a power set takes Θ(2n) time, where n is the size of the

given set. Again, n in this case is dependent on the space complexity from part one.

We have that the space complexity from part one is Θ(g×ravgg). So, the time taken to

generate the power set is Θ(2g×ravgg), and the space complexity is Θ(2g×ravgg). Since

we have assumed that there are no policies, the reduce() function does not do any-

thing. Then the time complexity of the reduce() is Θ(p× 2g×ravgg) = 0 since p = 0.

Thus, there are no additional time complexity or reduction in space complexity.

λ ← reduce(powerset(maps))

Figure 4.2: CBF Part Two

In Figure 4.3, we see the third part of the CBF . The outer loop iterates for Θ(a)

time. The time complexity of the inner loop depends on the space complexity from

part two. We have that the space complexity from part two is Θ(2g×ravgg). So, the

inner loop iterates for Θ(2g×ravgg) time. Thus, the time complexity is Θ(2g×ravgg).

However, since there is a check in the inner loop to determine if we should create

the link or not, the space complexity may be different. Again, there are two cases to

look at: the best case and the worst case. For the best case, only one element from

the power set passes the check (that means that every agent is capable of playing

at most one role). So, we have Θ(a) for the best case space complexity. For the

worst case, every element from the power set passes the check (that means that every

agent is capable of playing every role required by all the goals from ωG). So, we

have Θ(a× 2g×ravgg) for the worst case space complexity. Thus, we have Θ(a) space

complexity for the best case and Θ(a× 2g×ravgg) space complexity for the worst case.
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for each ωAa do
for each λm do

if ωAa is capable of λm then
links ∪ 〈ωAa, λm〉

end if
end for

end for

Figure 4.3: CBF Part Three

Finally, Figure 4.4 shows the fourth and last part of the CBF . Again, since we

have no policies, the reduce() function does not do anything. Thus, there are no

additional time complexity or reduction in space complexity. From Lemma 2, the

combination() function takes Θ(n×
∏n

i=1 |linksi.set|), where n is the number of links

and |linksi.set| is the cardinality of linksi.set. The number of links is the number of

agents. |linksi.set| depends on the space complexity from part four, which is Θ(a)

for the best case and Θ(a × 2g×ravgg) for the worst case. For the best case, the time

complexity is Θ(a) because there is only one element in each linksi.set (which means

that there is only one combination to pick). For the worst case, the time complexity is

Θ(a× 2g×ravgg×a) because there are 2g×ravgg elements in each linksi.set (which means

that there are 2g×ravgg×a combinations to pick). Thus, the time complexity is Θ(a)

for the best case and Θ(a× 2g×ravgg×a) for the worst case.

combinations ← combination(reduce(links))
for each combinationi from combinations do

Φ ← {}
for each linkl from links do

Φ ∪ 〈linkl.agent, linkl.setcombinationi
〉

end for
if PΦ(Φ) is valid then

if (score ← oaf(Φ)) > best.score then
best ← 〈score, Φ〉

end if
end if

end for

Figure 4.4: CBF Part Four
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We have the following time complexity for the CBF . In the best case, we have

Θ(g×ravgg+2g×ravgg+2g×ravgg+a). Asymptotically, Θ(g×ravgg+2g×ravgg+2g×ravgg+a)

≡ Θ(2g×ravgg). The terms g × ravgg, one of the 2g×ravgg, and a can be dropped

since a > 0, g > 0, and ravgg > 0, which leaves the term 2g×ravgg as the greatest

contributor to the time complexity. Similarly, the worst case time complexity is

Θ(g × ravgg + 2g×ravgg + 2g×ravgg + a × 2g×ravgg×a) ≡ Θ(a × 2g×ravgg×a). The terms

g × ravgg and 2g×ravgg can be dropped because the term a× 2g×ravgg×a is the greatest

contributor to the time complexity. Furthermore, since a also appears in the exponent,

Θ(a× 2g×ravgg×a) ≡ Θ(2g×ravgg×a).

Therefore, the time complexity of the CBF is Θ(2g×ravgg) for the best case and

Θ(2g×ravgg×a) for the worst case.

4.2 Analysis of Distributed Brute Force

There is an additional assumption required for the analysis of the distributed algo-

rithm.

• Message delivery time takes at most O(ε). What that means is that from the

time a message is sent, it would take at most ε time for the message to be

received.

Claim: Time complexity of the DBF for the best case is O((g×ravgg)+d2g×ravgg

a
e+

ε) and for the worst case is O(2g×ravgg×a + ε).

Proof: We show that the time complexity of the DBF is O((g×ravgg)+d2g×ravgg

a
e+

ε) for the best case and O(ε + 2g×ravgg×a) for the worst case.

Analysis of the DBF follows the pseudo code from Figure 3.4. The DBF analysis

is broken down into five parts.

We start by analyzing the first part. Figure 4.5 shows the first part of the DBF

that we are analyzing. The outer loop iterates Θ(g) time. However, the inner loop

iteration is variable because the number of iterations is dependent on the number of

roles of ωGg. As such, there are two possibilities to look at: the best case and the
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worst case. In the best case, each ωGg has only one role that can achieve ωGg. In

the worst case, each ωGg can be achieved by r roles, which is all the roles. Thus, the

best case time complexity is Θ(g) and the worst case time complexity is Θ(g× r). By

using the ravgg, we can combine the best case and worst case time complexity. In the

best case, where ravgg = 1, Θ(g× ravgg) ≡ Θ(g). For the worst case, where ravgg = r,

Θ(g × ravgg) ≡ Θ(g × r). Thus, we have Θ(g × ravgg), where 1 ≤ ravgg ≤ r, for the

time complexity.

However, the space complexity may be different because the creation of the data

depends on whether ωAa is capable of playing Rr. So, we have two possibilities to

look at: the best case and the worst case. If every ωAa is not capable of playing any

of the roles required by the goals in ωG, then we have Θ(0) as the best case space

complexity. What that means in this case is that agents can only do one thing which

is to “do nothing”. However, if every ωAa is capable of playing r roles, then we have

Θ(g × ravgg) as the worst case space complexity.

for each ωGg do
for each Rr that achieves ωGg do

if ωAself is capable of Rr then
maps ∪ 〈Rr, ωGg〉

end if
end for

end for

Figure 4.5: DBF Part One

Figure 4.6 shows the second part of the DBF that we are analyzing. From

Lemma 1, generation of a power set takes 2n time, where n is the size of the given set.

Again, n in this case is dependent on the space complexity from part one. We have

that the space complexity from part one is Θ(0) for the best case and Θ(g×ravgg) for

the worst case. In the best case, the time taken to generate the power set is Θ(20),

and the worst case is Θ(2g×ravgg). The two time complexity can be combined to form

Θ(d2g×ravgg

a
e). Similarly, the space complexity is Θ(1) for the best case and Θ(2g×ravgg)

for the worst case. Since we have assumed that there are no policies, the reduce()
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function does not do anything. Thus, there are no additional time complexity or

reduction in space complexity.

λself ← reduce(powerset(maps))

Figure 4.6: DBF Part Two

In Figure 4.7, we see the third part of the DBF that we are analyzing. Because we

have assumed that there is no multicast system for sending messages, messages are

sent individually to each agent. Since there are a agents, sending λself to all agents

requires ωAa to send a− 1 messages. Thus, the time complexity is Θ(a). There is no

additional space complexity for this part because no new data is created.

send λself to all agents

Figure 4.7: DBF Part Three

The fourth part of the DBF is shown in Figure 4.8. Because we have assumed that

there is no multicast system for message sending and every agent sends a message

to every other agent, that means that ωAa receives exactly a − 1 messages since we

have a agents. Thus, the time complexity for receiving λi from all agents is O(a+ ε).

The space complexity depends on the size of λi of each agent, which we have from

part two as Θ(1) for the best case and Θ(2g×ravgg) for the worst case. Thus, the space

complexity for the best case is Θ(a) and the worst case is Θ(a× 2g×ravgg).

receive λi from all agents

Figure 4.8: DBF Part Four

Finally, Figure 4.9 shows the fifth and last part of the DBF . From Lemma 2, the

combination() function takes Θ(
∏n

i=1 |λi|), where n is the number of mappings and

|λi| is the cardinality of λi. The number of mappings is also the number of agents.

|λi| depends on the space complexity from part four, which is Θ(a) for the best case

and Θ(a × 2g×ravgg) for the worst case. Thus, we have the following. In the best

case, the time complexity is Θ(a) because there is only one element in each λi (which
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means that there is only one combination to pick). And in the worst case, the time

complexity is Θ(a× 2g×ravgg×a) because there are 2g×ravgg elements in each λi (which

means that there are 2g×ravgg×a combinations to pick).

combinations ← combination(λ)
for each combinationi from combinations do

Φ ← {}
for each λj from λ do

Φ ∪ λjcombinationi

end for
if PΦ(Φ) is valid then

if (score ← oaf(Φ)) > best.score then
best ← 〈score, Φ〉

end if
end if

end for

Figure 4.9: DBF Part Five

Thus, we have the following for time complexity. In the best case, we have O((g×

ravgg)+(d2g×ravgg

a
e)+a+(a+ε)+a). Asymptotically, O((g×ravgg)+(d2g×ravgg

a
e)+a+(a+

ε)+a) ≡ O((g×ravgg)+d2g×ravgg

a
e+ε). The terms a can be dropped since the a terms

does not change the asymptotic complexity. Similarly, the worst case time complexity

is O((g×ravgg)+(d2g×ravgg

a
e)+a+(a+ε)+(a×2g×ravgg×a))≡ O((a×2g×ravgg×a)+ε). The

terms g×ravgg, d2g×ravgg

a
e, and both a can be dropped because the term a×2g×ravgg×a

is the greatest contributor to the time complexity. Furthermore, since a also appears

in the exponent, O((a× 2g×ravgg×a) + ε) ≡ O(2g×ravgg×a + ε).

Therefore, the time complexity of the DBF is O((g × ravgg) + d2g×ravgg

a
e + ε) for

the best case and O(2g×ravgg×a + ε) for the worst case.

4.3 Communication Complexity

Currently, there are no communication costs associated with the CBF algorithm

because there is no need for the algorithm to perform any sort of communication

when computing the optimal organizational score. However, in the DBF algorithm,
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there is a need for communication; the sending of an agent’s mappings set (λ) to all

other agents.

Since we assumed that any message can be sent without breaking the message into

multiple parts, regardless of the size of the message. The communication complexity

at this stage is a linear complexity based on the number of messages sent. However,

if a “real” broadcast system is available, only one message needs to be sent to achieve

broadcast.

4.4 Summary

In summary, this chapter shows the time complexity of the two versions of the

algorithm. The CBF has a time complexity of Θ(2g×ravgg) for the best case and

Θ(2g×ravgg×a) for the worst case. The DBF has a time complexity of O((g× ravgg) +

d2g×ravgg

a
e + ε) for the best case and O(2g×ravgg×a + ε) for the worst case. Further-

more, with the communication assumptions, the communication complexity increases

linearly in relation to the number of agents. The next chapter looks at an implemen-

tation of the two versions in a high-level simulator.

46



Chapter 5

Implementation

This chapter is about the implementation of the algorithm in a simulator called

Cooperative Robots Organization Simulator (CROS ). Furthermore, the organization

aspect of CROS is built on the current implementation of OMACS. As of the time of

this writing, most of OMACS have been implemented with the exception of policies.

Thus, the implementation of the algorithm excludes assignment policies as specified

by the reduce() function.

5.1 Cooperative Robots Organization Simulator

CROS is a high-level multi-threaded simulator. Figure 5.1 shows a simple overview of

the classes used in the simulator. In CROS , every object is of the type AbstractObject.

Physically, each object is of the same size and occupies exactly one location. A

location is represented by two integers: the x-coordinate and the y-coordinate. There

is no notion of a z-axis in CROS . However, in the future, CROS may introduce

the notion of levels or floors. The reason for a simplistic physics environment is so

that simulations of organizations-based reasoning can be tested without worrying too

much about the physics of the real world.

In CROS , the AbstractObject represents inanimate objects within the environ-

ment. In order to allow animated objects, CROS provides the AbstractAgent. Ab-

stractAgent is a subtype of AbstractObject. This is where the multi-threaded aspect

of CROS comes into play. Every AbstractAgent that exists in the environment is a
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thread that is executed once or repeatedly, depending on the code provided by the

programmer. However, an AbstractAgent by itself is unable to interact with the en-

vironment. Interactions in the environment are accomplished through capabilities.

CROS provides the AbstractCapability as the means to interact within the environ-

ment.

Figure 5.1: Class Diagram

The passage of time is measured in terms of turns. Each turn, certain interactions

can be performed only a specified number of times. Which brings us to the two kinds

of AbstractCapability: some can be used a finite number of times per turn, and some

can be used an infinite number of times per turn. Transition of turns is achieved

through capabilities that can be used a finite number of times per turn. These type

of capabilities are known as atomic capabilities. For instance, there is a Movement

capability that can only be performed once per turn. So, if a thread attempts use

the Movement capability twice in a turn, the second use will automatically be put on

hold until the next turn.
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Furthermore, CROS is dependent on the current implementation of OMACS.

CROS relies on that implementation to provide the ability for AbstractAgent to per-

form organization-based reasoning based on OMACS. Currently, there are three mod-

ules to the organization-based reasoning: the reasoning (Reasoning), the knowledge

(OrgKnowledge), and the algorithm (Algorithm). The Reasoning is where organization-

based reasoning about OMACS takes place such as deciding when and how to reorga-

nize. The OrgKnowledge is the agent’s current view of organization based on OMACS.

The Algorithm is the reorganization algorithm that will produce an assignment set that

provides a new viable organization.

(Note that CROS is in still in its early development stages. Thus the class names

and diagrams in this chapter may no longer be the same with the latest version of

CROS .)

5.1.1 Where To Get CROS

CROS is available for download from a CVS repository. The host of the repository

is macr.user.cis.ksu.edu. The repository path is /home/cvsroot. CROS is saved

under the project called OrganizationSimulator. Furthermore, since CROS relies

on the current implementation of OMACS, another project is required as well. This

project is called OrganizationModel from the same CVS repository.

5.2 Algorithm Implementation

The two versions of the algorithm are implemented as the algorithm module in the

organization-based reasoning module. Both versions implement the interface Algo-

rithm. The centralized version is called CentralizedBruteForce.java and the dis-

tributed version is called DistributedBruteForce.java. They are available as part

of the CROS project. The implementation is not exactly the same as the pseudo code

listed in Chapter 3. A difference is due to the fact that policies are not implemented

in the version of OMACS used in for this thesis.
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5.2.1 Centralized Brute Force Implementation

The CBF implementation is broken into three parts. The following code has been

edited to remove code used for profiling and debugging purposes.

Listing 5.1 shows the main reorganize() method. This method is called whenever

a reorganization is required by the reasoning module.

Listing 5.1: CBF Implementation Part One

1 public Collection<Assignment> reorganize(Organization organization, Collection<
GoalLeaf> workingGoals, Collection<Agent> workingAgents) {

2 List<Link> links = new ArrayList<Link>();
3 buildLinks(links , organization, workingGoals, workingAgents);
4 return findOptimalOrganization(links, organization);
5 }

The buildLinks() method is shown in Listing 5.2. This method creates the data

structures required by findOptimalOrganization().

Listing 5.2: CBF Implementation Part Two

6 private void buildLinks(List<Link> links, Organization organization, Collection<
GoalLeaf> goals, Collection<Agent> agents) {

7 /∗ create the <role, goal> mappings ∗/
8 Set<Map> mapSet = new HashSet<Map>();
9 for (GoalLeaf<?> g : goals) {

10 for (Role r : g.getAchievedBySet()) {
11 mapSet.add(new Map(r, g));
12 }
13 }
14 /∗ create the powerset of the <role, goal> mappings ∗/
15 Set<Set<Map>> powerSet = new PowerSet<Map>().powerSetT(mapSet);
16 /∗ TODO remove invalid sets of <role, goal> mappings ∗/
17 /∗ map agents to sets of <role, goal> mappings ∗/
18 for (Agent<?, ?> a : agents) { /∗ for each agent ∗/
19 Link link = new Link(a);
20 for (Set<Map> set : powerSet) { /∗ for each set of <roles,goals> ∗/
21 boolean capable = true;
22 /∗ check if the agent is capable of playing all the mappings ∗/
23 for (Map map : set) {
24 capable &= (map.role.rcf(a) > 0.0);
25 }
26 if (capable) {
27 link .assignments.add(set);
28 }
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29 }
30 links .add(link);
31 }
32 /∗ TODO remove invalid <agent, role, goal> assignments ∗/
33 }

The findOptimalOrganization() method is shown in Listing 5.3. This method

computes the optimal organizational score and returns an assignment set that gives

the optimal organizational score.

Listing 5.3: CBF Implementation Part Three

34 private Collection<Assignment> findOptimalOrganization(List<Link> links,
Organization organization) {

35 long numberOfCombinations = 1;
36 for (Link l : links ) {
37 numberOfCombinations ∗= l.assignments.size();
38 }
39 double bestAssignmentScore = 0.0;
40 Collection<Assignment> bestAssignmentSet = new ArrayList<Assignment>();
41 for (long combination = 0; combination < numberOfCombinations; combination++) {
42 /∗ create an assignment set ∗/
43 Collection<Assignment> assignmentSet = new ArrayList<Assignment>();
44 for (Link l : links ) {
45 for (Map m : l.assignments.get(l .index)) {
46 assignmentSet.add(new Assignment(l.agent, m.role, m.goal));
47 }
48 }
49 /∗ determine oaf() score ∗/
50 organization.clearAssignmentSet();
51 organization.addAssignmentSet(assignmentSet);
52 double score = organization.oaf();
53 if (score > bestAssignmentScore) {
54 /∗ better organization ∗/
55 bestAssignmentScore = score;
56 bestAssignmentSet = assignmentSet;
57 }
58 /∗ go to next combination ∗/
59 for (int i = 0; i < links. size () ; i++) {
60 /∗ increment the index of the ith element ∗/
61 Link l = links.get( i ) ;
62 l . index++;
63 if ( l .index < l.assignments.size ()) {
64 break;
65 } else {
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66 l . index = 0;
67 }
68 }
69 }
70 /∗ at this point , we have the best organization, if one exists ∗/
71 organization.clearAssignmentSet();
72 organization.addAssignmentSet(bestAssignmentSet);
73 return bestAssignmentSet;
74 }

5.2.2 Distributed Brute Force Implementation

The DBF is broken into five parts. The following code has been edited to remove

code used for profiling and debugging purposes.

Listing 5.4 shows the main reorganize() method. This method is called whenever

a reorganization is required by the reasoning module.

Listing 5.4: DBF Implementation Part One

1 public Collection<Assignment> reorganize(Organization organization, Collection<
GoalLeaf> working, Collection<Agent> workingAgents) {

2 List<Set<Map>> maps = new ArrayList<Set<Map>>();
3 buildMaps(maps, organization, working);
4 send(maps, organization);
5 List<Link> links = new ArrayList<Link>();
6 links .add(new Link(organization.getAgent(parent.name), maps));
7 receive ( links , organization) ;
8 return findOptimalOrganization(links, organization);
9 }

Listing 5.5 shows the buildMaps() method. This method creates the data struc-

tures required by the send() method.

Listing 5.5: DBF Implementation Part Two

10 private void buildMaps(List<Set<Map>> maps, Organization organization, Collection
<GoalLeaf> goals) {

11 /∗ create the <role, goal> mappings ∗/
12 Set<Map> mapSet = new HashSet<Map>();
13 for (GoalLeaf<?> g : goals) {
14 for (Role r : g.getAchievedBySet()) {
15 mapSet.add(new Map(r, g));
16 }
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17 }
18 /∗ create the powerset of the <role, goal> mappings ∗/
19 Set<Set<Map>> powerSet = new PowerSet<Map>().powerSetT(mapSet);
20 /∗ TODO remove invalid sets of <role, goal> assignments ∗/
21 /∗ map agents to sets of <role, goal> assignments ∗/
22 for (Set<Map> set : powerSet) { /∗ for each set of <roles,goals> ∗/
23 boolean capable = true;
24 /∗ check if the agent is capable of playing all the assignments ∗/
25 for (Map map : set) {
26 capable &= (map.role.rcf(organization.getAgent(parent.name)) > 0.0);
27 }
28 if (capable) {
29 maps.add(set);
30 }
31 }
32 }

Listing 5.6 shows the send() method. This method sends the agent’s data over

to the other agents.

Listing 5.6: DBF Implementation Part Three

33 private void send(List<Set<Map>> maps, Organization organization) {
34 for (Agent<?, String> a : organization.getAgentSet()) {
35 parent.send(new Message(parent.name, a.getContactInformation(), ””,
36 maps));
37 }
38 }

Listing 5.7 shows the receive() method. This method constructs the necessary

data structure required by the findOptimalOrganization() by receiving data from

every other agent.

Listing 5.7: DBF Implementation Part Four

39 private void receive(List<Link> links, Organization organization) {
40 while (parent.messages() != organization.getAgentSet().size()) {
41 parent.endTurn();
42 }
43 for (Message m = (Message) parent.receive(); m != null; m = (Message) parent
44 . receive ()) {
45 links .add(new Link(organization.getAgent(m.sender),
46 (List<Set<Map>>) m.content));
47 }
48 }
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Listing 5.8 shows the findOptimalOrganization() method. This method com-

putes the optimal organizational score and returns an assignment set that gives the

optimal organizational score.

Listing 5.8: DBF Implementation Part Five

49 private Collection<Assignment> findOptimalOrganization(List<Link> links,
Organization organization) {

50 long numberOfCombinations = 1;
51 for (Link l : links ) {
52 numberOfCombinations ∗= l.assignments.size();
53 }
54 double bestAssignmentScore = 0.0;
55 Collection<Assignment> bestAssignmentSet = new ArrayList<Assignment>();
56 for (long combination = 0; combination < numberOfCombinations; combination++) {
57 /∗ create an assignment set ∗/
58 Collection<Assignment> assignmentSet = new ArrayList<Assignment>();
59 for (Link l : links ) {
60 for (Map m : l.assignments.get(l .index)) {
61 assignmentSet.add(new Assignment(l.agent, m.role, m.goal));
62 }
63 }
64 /∗ determine oaf() score ∗/
65 organization.clearAssignmentSet();
66 organization.addAssignmentSet(assignmentSet);
67 double score = organization.oaf();
68 if (score > bestAssignmentScore) {
69 /∗ better organization ∗/
70 bestAssignmentScore = score;
71 bestAssignmentSet = assignmentSet;
72 }
73 /∗ go to next combination ∗/
74 for (int i = 0; i < links. size () ; i++) {
75 /∗ increment the index of the ith element ∗/
76 Link l = links.get( i ) ;
77 l . index++;
78 if ( l .index < l.assignments.size ()) {
79 break;
80 } else {
81 l . index = 0;
82 }
83 }
84 }
85 /∗ at this point , we have the best organization, if one exists ∗/
86 organization.clearAssignmentSet();
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87 organization.addAssignmentSet(bestAssignmentSet);
88 return bestAssignmentSet;
89 }

5.3 Summary

In summary, this chapter highlights the implementation of the two versions of the

algorithm in CROS . The next chapter provides a look at some compiled results of

testing the implementation of the CBF .
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Chapter 6

Results

This chapter shows the results of the CBF . There are three sections to this chapter:

§ 6.1 discusses the runtime results of the CBF ; § 6.2 discusses the optimal assignments

set produced by the CBF ; and § 6.3 discusses some of the characteristics discovered

when developing and testing the CBF of OMACS.

6.1 Runtime Results

To test the CBF , a random model generator is created for OMACS. The random

model generator is available as the project OrganizationModelGenerator from the

same CVS repository. The random model generator takes five inputs: the number

of goals, the number of roles, the number of agents, the average number of roles per

goal, and the average number of agents per role. From the five inputs given, a model

is randomly generated.

In the test cases, the inputs were set to range from 1 . . . 3 for all five inputs.

However, the last two inputs (average number of roles per goal, and average number

of agents per role) were bounded by the number of roles and the number of agents

respectively. In addition, there were ten runs of the same tests so that a better

estimate of the runtime could be obtained. In the tests, the time was logged just

before the algorithm begins and immediately after the algorithm completes. The

time was tracked in nanoseconds.

This test suite was written in Java. The system used for testing was a Pentium
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III 1.7 GHz, 1 GB RAM running Slackware 10.2. However, the precision of the JVM

only provided us with microseconds.

In the first batch of tests results, the first case (one goal, one role, one agent,

one average role per goal, one average agent per role) would have extremely high

running time. Subsequent cases would have incremental drops in running time. The

JVM was determined to be the cause of the problem after a careful analysis of the

results. In the JVM, the first time a byte code is executed, that code is interpreted.

And using some heuristics, that code might be compiled to native code for later

executions, which will run significantly faster. Thus, in all ten samples, the original

runtime of the first case was extremely high while subsequent cases had much lower

running time. Furthermore, the disparity in runtime is noticeable because the early

cases had a running time of hundreds of microseconds while subsequent cases had an

exponentially increasing running time.

With this knowledge, modifications were made to test suite to include a “warm

up” phase where the required classes are called one thousand times before the actual

timing of the algorithm starts. This number forces almost all of the necessary byte

code to be compiled natively, although there is no guarantee as the heuristics used

for determining when byte code is compiled to native code is unknown. With the

revised test suite, a second batch of ten samples were obtained and the results were

more consistent with the expected results based on the analysis.

Furthermore, since the timings are in microseconds, the small cases like the first

case are highly susceptible to external factors because the running time of the small

cases are in hundreds of microseconds. A simple keyboard or mouse interrupt con-

tributes significantly to the running time of the small cases. The following five graphs

shows a sample of the compiled runtime results. The graphs are represented in a log-

arithmic scale. Figure 6.1 shows the runtime results as the number of goals increases.

Figure 6.2 shows the runtime results as the number of roles increases. Figure 6.3

shows the runtime results as the number of agents increases. Figure 6.4 shows the

runtime results as the average number of roles per goal increases. Figure 6.5 shows
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the runtime results as the average number of agents per role increases. All figures

show three samples taken from the compiled data. Each line represents a sample

where the other inputs are fixed at the values of 1, 2, or 3 as shown in the figures’

legends.

Figure 6.1: Time - Goals

The five graphs concur with the time complexity analysis of the algorithm, espe-

cially in the cases where the values of four inputs are set to 3. In the logarithmic

graphs, a straight line with 0 gradient means a polynomial time complexity and a

straight line with a positive gradient means an exponential time complexity. The

results of the small cases (four inputs set to 1) show a slight exponential time com-

plexity while the large cases (four inputs set to 3) show an exponential time complexity

consistent with the analysis of Θ(2g×ravgg×a).
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Figure 6.2: Time - Roles

Figure 6.3: Time - Agents
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Figure 6.4: Time - Average Roles Per Goal

Figure 6.5: Time - Average Agents Per Role
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6.2 Optimal Assignments Set

Next, the CBF was tested on three actual models for correct results. The three models

are taken from two applications: “Adaptive Information System” (one model) and

“Search and Rescue” (two models)1. For testing purposes, the implementations differs

slightly from the models. Since the models do not show any scores for relations, all

scores are assumed to have a value of 1.0 for simplicity. That means that roles achieve

goals with a score of 1.0 and agents possesses capabilities with a score of 1.0.

6.2.1 Adaptive Information System Model

Figure 6.6 shows the goal model for the “Adaptive Information System”. There are

six leaf goals.

G1 1: Validate Enemy Vehicles

G2 2.1.1: Access Moving Vehicle Sensor

G3 2.1.2: Combine Moving Vehicles Into List

G4 2.2: Combine Moving & ID’s Vehicle

G5 2.3.1: Access ID Vehicle Sensor

G6 2.3.2: Combine ID Vehicle Into List

Figure 6.7 shows the role model. Six roles are defined in the role model and for

each role the capabilities required by that role. Each role is defined for each of the

leaf goals. However, the figure does not indicate which goal is achieved by which

role. Fortunately, there is a text description that states that each role is designed to

achieve a specific goal.

R1 Enemy Vehicle Validator → {G1}

R2 Moving Vehicle Sensor Interface → {G2}

R3 Moving Vehicle List Combiner → {G3}
1The models were taken from Dr. Scott A. DeLoach’s working notes.
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Figure 6.6: Adaptive Information Systems Goal Model

R4 Moving/ID Combiner → {G4}

R5 ID Sensor Interface → {G5}

R6 ID List Combiner → {G6}

The following are the eight capabilities defined in the role model.

C1 Capable Of Validation

C2 Access To Enemy/Friendly Database

C3 Access To Moving Vehicle Sensor

C4 Area Of Coverage

C5 Capable Of Producing Moving Vehicle List

C6 Capable Of Combining Moving & ID List

C7 Access To ID Sensor

C8 Capable Of Producing Vehicle ID List
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Figure 6.7: Adaptive Information Systems Role Model

Eight agents were defined as the number of agents was not specified by the models.

Six agents possessing only the capabilities required by one of the roles, one agent

possessing all the capabilities, and one agent possessing none of the capabilities.

A1 ↔ {C1, C2, C3, C4, C5, C6, C7, C8}

A2 ↔ {C1, C2}

A3 ↔ {C3, C4}

A4 ↔ {C5}

A5 ↔ {C6}

A6 ↔ {C4, C7}

A7 ↔ {C8}

A8 ↔ {}

Table 6.1 shows the results returned by the algorithm. Given the default oaf(),

the optimal assignments set would be that agent A1 will play the roles (R1, R2, R3,
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R4, R5, and R6) to achieve the goals (G1, G2, G3, G4, G5, and G6) respectively.

A2 will play R1 to achieve G1; A3 plays R2 to achieve G2; A4 plays R3 to achieve

G3; A5 plays R4 to achieve G4; A6 plays R5 to achieve G5; A7 plays R6 to achieve

G6; and A8 cannot play any roles. A1 can play all roles because A1 possesses the

capabilities required by every role. A2 can only play R1 because A2 only possesses

the capabilities required for R1. Since no role’s required capabilities set is a subset

of another role’s required capabilities set; A2, A3, A4, A5, A6, and A7 can only play

the role they are designed for, which is R1, R2, R3, R4, R5, and R6 respectively.

Comparing the expected results to the results from Table 6.1, it is clear that the

implementation of the CBF returns the optimal result.

Agent Role Goal
A1 R1 G1
A1 R2 G2
A1 R3 G3
A1 R4 G4
A1 R5 G5
A1 R6 G6
A2 R1 G1
A3 R2 G2
A4 R3 G3
A5 R4 G4
A6 R5 G5
A7 R6 G6

Table 6.1: Adaptive Information Systems Assignments Set

6.2.2 Search and Rescue

The two versions of the “Search and Rescue” share the same goal model. The differ-

ence lies in their role model. In Figure 6.8, five leaf goals are defined.

G1 1.1: Search Area

G2 1.2: Identify Victims

G3 2.1: Locate Victim
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G4 2.2: Pickup Victim

G5 2.3: Carry Victim Home

Figure 6.8: Search and Rescue Goal Model

6.2.2.1 Search and Rescue Version 1

Figure 6.9 shows the first version of the role model. Two roles are defined to achieve

the five leaf goals from Figure 6.8.

R1 Searcher → {G1, G2}

R2 Rescuer → {G3, G4, G5}

In addition, Figure 6.9 defines four capabilities that are required the roles.

C1 Range Sensor

C2 ID Sensor

C3 Movement

C4 Gripper

Four agents were defined: two agents possessing only the capabilities required by

one of the roles, one agent possessing all the capabilities, and one agent possessing

none of the capabilities.
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Figure 6.9: Search and Rescue Role Model Version 1

A1 ↔ {C1, C2, C3, C4}

A2 ↔ {C1, C2, C3}

A3 ↔ {C1, C3, C4}

A4 ↔ {}

Table 6.2 shows the results returned by the algorithm. Given the default oaf(),

the optimal assignments set would be that agent A1 will play the roles R1 and R2

to achieve the goals {G1, G2}, and {G3, G4, G5} respectively. A2 will play R1 to

achieve G1 and G2; A3 plays R2 to achieve G3, G4, and G5; and A4 cannot play

any roles. A1 can play all roles because A1 possesses the capabilities required by

every role. A2 can only play R1 because A2 only possesses the capabilities required

for R1. Since no role’s required capabilities set is a subset of another role’s required

capabilities set; A2 and A3 can only play the role they are designed for, which is R1
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and R2 respectively. Comparing the expected results to the results from Table 6.2,

it is clear that the implementation of the CBF returns the optimal result.

Agent Role Goal
A1 R1 G1
A1 R1 G2
A1 R2 G3
A1 R2 G4
A1 R2 G5
A2 R1 G1
A2 R1 G2
A3 R2 G3
A3 R2 G4
A3 R2 G5

Table 6.2: Search and Rescue Version 1 Assignments Set

6.2.2.2 Search and Rescue Version 2

Figure 6.10 shows the second version of the role model. In addition to the two roles

from the first version, an additional role is defined. More accurately, the “Searcher”

role is broken down into two roles: “Searcher” and “Identifier”. The types of capa-

bilities remains the same as the first version. The only change is that the “Searcher”

role no longer requires “ID Sensor” capability, that capability is now required by the

“Identifier” role.

R1 Searcher → {G1}

R2 Rescuer → {G3, G4, G5}

R3 Identifier → {G2}

Five agents were defined: three agents possessing only the capabilities required

for one of the roles, one agent possessing all the capabilities, and one agent possessing

none of the capabilities.

A1 ↔ {C1, C2, C3, C4}

A2 ↔ {C1, C3}
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Figure 6.10: Search and Rescue Role Model Version 2

A3 ↔ {C1, C3, C4}

A4 ↔ {C2, C3}

A5 ↔ {}

Table 6.3 shows the results returned by the algorithm. Given the default oaf(),

the optimal assignments set would be that agent A1 will play the roles R1, R2, and

R3 to achieve the goals G1, {G3, G4, G5}, and G2 respectively. A2 will play R1 to

achieve G1; A3 plays R1 and R2 to achieve G1, and {G3, G4, G5} respectively; A4

plays R3 to achieve G2; and A5 cannot play any roles. A1 can play all roles because

A1 possesses the capabilities required by every role. A2 can only play R1 because

A2 only possesses the capabilities required for R1. Similarly, A4 can only play R3

because A4 only possesses the capabilities required for R3. However, it is interesting
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to note that A3 is able to play two roles (R1 and R2) even though A3 was designed

for R2. This happens because the required capabilities set of R1 is a subset of the

required capabilities set of R2. Comparing the expected results to the results from

Table 6.3, it is clear that the implementation of the CBF returns the optimal result.

Agent Role Goal
A1 R1 G1
A1 R2 G3
A1 R2 G4
A1 R2 G5
A1 R3 G2
A2 R1 G1
A3 R1 G1
A3 R2 G3
A3 R2 G4
A3 R2 G5
A4 R3 G2

Table 6.3: Search and Rescue Version 2 Assignments Set

6.3 Reducing Time Complexity

Using the time complexity derived from Chapter 4 for the CBF , design characteristics

were uncovered that would lead to a run time that is close to the best case inputs.

The best case time complexity is Θ(2g×ravgg) and the worst case time complexity

is Θ(2g×ravgg×a). Also, the effects of assignment policies on the time complexity is

further discussed in § 6.3.2.

6.3.1 General Designs

Typically, when designing an organization, designers often associate a leaf goal with

a role. This approach leads to a more restrictive model in terms of adaptability to a

changing environment. [RDK06] provides more information on the issue of flexibility.

For example, in the case of having one role per goal, the variable ravgg can be factored

out from the complexity because ravgg = 1. In addition, having one role per agent will
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effectively reduce the number of possible assignments to exactly two per agent: one

playing the role, and the other not playing any role. This would lead to a significantly

reduced time complexity of Θ(2a). However, as was mentioned earlier, this approach

leads to a loss of flexibility in the model. In order to allow more flexibility without

disregarding this approach, a more complicated model is required which results in an

increase to the time complexity.

There are many more design characteristics that can be discovered. One such area

is to look at the issue of the flexibility of a model versus the efficiency of a model.

Perhaps compromise can be found to provide an acceptable efficiency and flexibility.

However, this area is left open to future work.

6.3.2 Assignment Policies

Assignment policies can have varying effects on the search space of the algorithm. For

instance, if there is a policy that says that “agents can only play one role at a time”,

the search space for each agent is reduced by a significant amount which directly

affects the time complexity. Assume an agent is able to play five roles and each

role achieves three goals. In the default situation, this agent has 25×3=15 = 32, 768

possible assignments. However, with this policy, the agent only has 5×3 = 15 possible

assignments. If there are four other similar agents, without the policy there is a total

of 32, 7684 = 1, 152, 921, 504, 606, 846, 976 combinations. With the policy, the total

combinations are 154 = 50, 625.

In the preliminary analysis, the CBF was modified into two versions that use the

policy “agents can only play one role at a time”. In the CBF, there are two locations

that policy checking occurs. However, this particular policy is only applicable in the

first location as noted in Figure 6.11.

λ ← reduce(powerset(maps))

Figure 6.11: First Policy Check

The two versions highlights two ways the policy can be applied to the CBF algo-
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rithm.

Version 1 prunes the power set by removing invalid sets. For this policy, sets with

more than one element is removed.

Version 2 replaces the power set function with a custom function that only generates

sets with one element.

Figure 6.12 shows the preliminary results that compare the CBF algorithm versus

the two modified versions. As expected, version 1 performs worse in small cases

because the power set function is the greatest contributor to the time complexity

and the extra time required to remove invalid sets. However, when the power set

function stops being the greatest contributor to the time complexity, version 1 begins

to perform better. Version 2 on the otherhand, always performs better than both the

original CBF algorithm and version 1.

Figure 6.12: Comparisons

Similarly, a policy like “a role can only achieved one goal” will have similar effect

on the time complexity. Using the above example with this policy, the possible
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assignments for each agent will be 25×1=5 = 32 and the total combinations of the four

agents will be 324 = 1, 048, 576.

Using both policies will yield a greater decrease in the time complexity. The

possible assignments for an agent will be 5 and the total combinations will be 54 = 625.

The effects of policies on the time complexity varies based on the policies involved. In

this particular case, using both policies the time complexity of the CBF is changed

such that the greatest contributor to the time complexity is the generation of the

power set instead of the combinations. However, this does not take into consideration

the additional time complexity costs from performing policy checks. In Chapter 4, the

analysis assumes that there are no policies so there are no additional time complexity.

Adding additional policies also adds additional time complexity. In this particular

case, both policies adds a linear time complexity based on the size of the inputs. There

are two reductions performed in the CBF : once for the power set and once for the

links. Each policy will have to be checked against every element from the power set

and the links. However, it is unknown as to whether the benefits of policies outweigh

the additional time complexity for policy checking and also if any additional policy

only adds a linear time complexity. The study of this area of policies is left open to

future work.

6.4 Summary

In summary, this chapter shows the results of the implementation and some char-

acteristics pertaining to the algorithm. The results confirm the exponential time

complexity involved in finding an optimal organization score. The characteristics

highlight how to reduce the time complexity of the CBF but will result in a less

flexible model. The next chapter concludes the thesis.
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Chapter 7

Conclusions

This chapter concludes the thesis by summarizing the work accomplished. In addition,

potential areas for future work are highlighted.

7.1 Thesis Contributions

The work done in this thesis lays the groundwork for future research into more effi-

cient reorganization algorithms for OMACS. This thesis introduces an reorganization

algorithm that produces an optimal solution and analyzes the complexity of the re-

organization algorithm, which shows an exponential time complexity in both the

centralized and distributed version. The exponential time complexity is a result of

limitations in OMACS that does not allow more information to be obtained with

respect to reorganization algorithms. The exponential time complexity prevents the

reorganization algorithm from being useful in practice, where time is an important

factor. If time is not a factor, the reorganization algorithm returns an optimal assign-

ment set. However, because time is an important factor in most real world cases, this

reorganization algorithm is highly impractical except for the extremely small cases.

Furthermore, this thesis provides an implementation for the two versions of reorga-

nization algorithm (CBF and DBF ) in a high-level simulator (CROS ). In addition,

this thesis provides a compilation of the results from testing the the implementation

of the CBF .

As a result, some interesting design characteristics surfaced. This thesis covers a
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few basic design characteristics that allows designers to design models such that the

running time of the algorithm is close to the best case input, which is still exponential

but smaller by an order of magnitude. Interestingly, this also opens up an entirely

new area of research into the study of performance measures for models of OMACS.

This thesis mentions briefly two such metrics from preliminary observation: efficiency

in terms of reorganization algorithm performance, and flexibility in terms of how

well a model is able to adapt to a changing environment [RDK06]. Another aspect

for performance metrics is in the area of policies. Policies have varying effects on

OMACS. This thesis briefly highlights two policies that have a profound effect on the

time complexity of the reorganization algorithm.

Last but not least, subtle improvements can be made to reorganization algorithms

if the algorithm is designed to be distributed among the agents. This thesis covers

a brief overview of the complexity of communication among agents for distributed

algorithms, as well as some of the gains in time complexity from adopting a distributed

approach.

7.2 Future Work

This section lists several interesting areas for future work and improvements.

7.2.1 Extending the Model

Currently, OMACS provides limited functionality to reorganization algorithms. Par-

ticularly, the lack of information about how the internal workings of the oaf() and

rcf() restrict the use of heuristics in search algorithms. Knowing that the oaf() and

rcf() are deterministic is not sufficient. Without more information about the oaf()

and rcf(), general purpose search algorithms cannot be implemented efficiently. As

such, for any search algorithm to be efficient, the search algorithm will have to be

implemented for a specific model with a specific oaf() and a specific rcf(). For

example, there are two agents (Agent1 and Agent2), two roles (Role1 and Role2),

one goal (Goal1), and one capability (Capability1). Both Role1 and Role2 requires
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Capability1, and they achieve Goal1 with a score of 1.0. Both Agent1 and Agent2

possesses Capability1 with a score of 1.0. An oaf() might give an organization score

higher than 2.0 if Agent1 is assigned to play both roles. Or an oaf() might give an

organization score of 0.0 if Agent1 is assigned to play both roles.

Exposing the internal workings of the oaf() and rcf() require extensions to

OMACS. With a good interface that is able to expose the internal workings of the

oaf() and the rcf(), efficient algorithms can be designed for general use. For in-

stance, for the oaf(), knowing that when two agents are playing the same role, their

combined score would be a factor instead of the simple additive score would help

tremendously in reducing the search space. Again, for the rcf(), knowing how much

a capability contributes to the rcf() score would help. One such approach to expos-

ing the internal workings of the oaf() and rcf() would be to encode the internal

workings of the oaf() and rcf() into some standardized data structure. When an

algorithm executes, that algorithm would then be able to extract information from

the data structure about the oaf() and rcf().

Further research into this area may reveal how the oaf() and rcf() can be re-

designed for more effective uses.

7.2.2 Exploring Design Characteristics

The time complexity from Chapter 4 can be further improved. A finer grain time

complexity will provide more information about the characteristics of OMACS with

respect to the reorganization algorithms. With further understanding on the relation-

ships between OMACS and design characteristics, and the relationships among the

design characteristics, a metrics system can be introduced that would allow models

to be evaluated on areas such as efficiency and flexibility.

7.2.3 Exploring Effects Of Policies

In § 6.3.2, some of the potential effects that assignment policies have on reorganization

algorithms are mentioned. However, very little else is known about the types of effects
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that different assignment policies can have on the time complexity of reorganization

algorithms. Furthermore, knowing the effects of policies on OMACS (particularly

the effects that policies have on reorganization algorithms) could also lead to design

metrics for policies evaluation.

7.2.4 Distributing the Algorithm

§ 4.3 covered a brief overview of the communication costs for distributed reorganiza-

tion algorithms. This thesis only breaches the surface of distributed algorithms. Even

with the simplistic distributed version provided by this thesis, the time complexity

improved in the best case. By adopting a purely distributed approach to designing

reorganization algorithms, there could be significant gains in the time complexity as

the number of agents increases. However, the additional communication costs could

be significant as well. Further investigative research into this area may unveil the

advantages and disadvantages of distributed algorithms for OMACS.
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